
KLOS: A High Performance Kernel-Less Operating System
Amit Vasudevan

Computer Science & Engg.
University of Texas at Arlington

vasudeva@cse.uta.edu

Ramesh Yerraballi
Computer Science & Engg.

University of Texas at Arlington
ramesh@cse.uta.edu

Ashish Chawla
Computer Science & Engg.

University of Texas at Arlington
chawla@cse.uta.edu

ABSTRACT
Operating Systems provide services that are accessed by
processes via mechanisms that involve a ring transition to
transfer control to the kernel where the required function is
performed. This has one significant drawback that every
service call involves an overhead of a context switch where
processor state is saved and a protection domain transfer is
performed. However, as we discovered, it is possible, on
architectures that support segmentation, to achieve a
significant performance gain in accessing the services
provided by the operating system by not performing a ring
transition. Further, such gains can be achieved without
compromising on the separation of the privileged components
from the non-privileged. Our service call mechanism results
in 28 clock cycles in the best case and 50 clock cycles in the
average case which is an order of magnitude faster than
current widely implemented methods of service or system
calls

1. INTRODUCTION
Most, if not all production level operating systems have a

dual mode of operation – (1) the privileged level where the
kernel resides and, (2) the unprivileged level where
application and system processes execute. A ring transition
mechanism is used to move from one level to the other. The
idea behind this separation has always been protection and
stability. However, on architectures that support
segmentation, it is possible to achieve a significant
performance gain by eliminating the ring transition. Further,
such gains can be achieved without compromising protection.
This is made possible by the use of a subtle trick involving
segmentation and Task State Segments (TSS).

We propose an operating system design in which – (1)
there is no protected kernel as perceived in current operating
systems, (2) Operating system services are accessed without a
ring transition, (3) all processes and the operating system
execute at the unprivileged level and, (4) each process has its
own private address space and virtual memory mapping and
functions independent of all other processes in the system.
KLOS, a Kernel-Less Operating System is a realization of
this design.

We primarily target this design towards personal
computers where performance takes precedence over
stability. A point to be reinforced is that, regular runaway
processes do not pose a threat to the stability of the operating
system built on this design. Processes that are specifically
engineered to thwart the stability of the system are contained
with a very high probability of success.
 KLOS is very much a work in progress. However, we
have had very promising preliminary results that validate our
design and therefore prompted us to share it with the research
community at large. The following sections of the paper
discuss the design, implementation and performance study in
detail.

2. BACKGROUND
Early operating systems relied on a monolithic kernel

design. The application processes were launched in the
unprivileged mode that accessed services through the
traditional system call barrier, which involved a transition
from the user space to the kernel space. Examples include
UNIX, BSD and, Windows.

With Microkernels, most components of the operating
system were isolated from one another whilst maintaining a
very minimal core that provided services (threads, messaging,
RPC/LPC etc.) to the components. Examples include Spring
[2,5], uChoices [3], SPIN [4]. They performed better [7] in
comparison to traditional monolithic kernels, but still relied
on the system call barrier for protection.
 Exokernels [6] provided a minimal kernel with only
message passing and moved most of what was in the
microkernel out into the user space. Again, they relied on a
ring transition to provide protection between the kernel and
the application.

Component-based OSs involve a Nanokernel that
manages component interaction as seen in operating systems
like Pebbles [9] and Go! [10]. The Go! Operating system,
which matches the performance of KLOS, launches all the
components in the most privileged level, by using a static
technique called code scanning where the executables are
pre-scanned for illegal/privileged instructions [8].

There were other methods proposed to increase the
performance of operating systems while at the same time
ensuring protection by employing the segmentation capability
of x86-based processors [1,11,12]. Our design also makes use
of this capability, doing away with the down-call to the
protected kernel. Lastly, our method is dynamic, which
means there is no code pre-scanning or other procedures that
need to be applied on application code before it is executed.

3. DESIGN
 Our architecture, at its heart consists of an event core
that is responsible for acting upon external events (hardware
interrupts and processor generated exceptions). Events are the
only means of vertical up-calls to the unprivileged domain.
There are no down-calls to the privileged domain resulting in
no context switches during normal program flow. All the
components of a typical OS like the memory manager,
process manager, device drivers etc. run in the unprivileged
domain and have a horizontal mode of interaction.

Event Core
 The Event Core is the heart of the KLOS architecture.
The amount of processing done in the event core is minimal
and restricted to transferring control to the unprivileged
domain and performing an optional Translation Look-aside
Buffer (TLB) flush. It is important to note that the Event Core
is not just another name for the “kernel” as viewed in
traditional OSs. Unlike traditional kernels, in KLOS there are
no “down-calls” to the Event Core.

The TSS created during OS startup is initialized with
support for the Event Core. This includes the event core stack
that needs to be intact upon event triggering, as it is a part of
the Trusted Computing Base (TCB) of the OS. The Event
Core is composed of event stubs, one for every hardware
interrupt or exception the underlying processor architecture
supports. These event stubs are registered once at system
initialization. The exact flow of how an event is handled is as
depicted in figure 1.

Hardware interrupt or Processor Exception (Event n)

Eventn_Ring0Stub

Issue End of Interrupt
(Exception) to Processor
with optional TLB flush.

RING0

CALL
RING3

Eventn_Ring3Stub

Eventn_Handler

JMP
RETURN

Figure 1: Event Core

Upon a hardware interrupt or exception, the processor
switches the current context to the privileged level (Ring0)
and transfers control to a vectored interrupt or exception
handler corresponding to the interrupt or exception via the
Interrupt Descriptor Table (IDT). In this case, each of the
handlers will be pointing to an event stub
“Eventn_Ring0Stub” . Eventn_Ring0Stub will
reflect the interrupt or exception ‘n’, to the unprivileged level
(Ring 3) stub “Eventn_Ring3Stub” via a far CALL,
switching privilege levels. This ring 3 stub in turn executes a
JMP to a registered event handler, “Eventn_Handler” at
the same unprivileged level.

Once “Eventn_Handler” has completed its
execution, control returns back to “Eventn_Ring0Stub”
via a far return, switching back to the privileged level (Ring
0). “Eventn_Ring0Stub” then performs an optional TLB
flush. Event Handlers in subsystems such as the scheduler or
the memory manager modify virtual memory mappings.
Committing changes to such mappings requires a TLB flush.
Finally, “Eventn_Ring0Stub” issues an end of interrupt
or exception signal to the processor.

Protection
 To achieve a similar level of protection as with a ring-
transition mechanism, we make use of a combination of
segmentation and TSS. Below, we discuss the various kinds
of protection that KLOS provides.

Memory protection
 There are two pairs of unique data segment selectors –
one for the application data access (DSAPP), which is limited
to the application address space and the other for the
protected OS data space (DSOS), encompassing the entire
4GBytes address space. All segment descriptors have a
Descriptor Privilege Level (DPL) of 3 (unprivileged). There
is only one code segment selector that is shared between the
application and the OS. The code segment descriptor is
constructed so that it is only executable and not readable.

The DSAPP selector prevents the application from
tampering with critical OS structures, as it is restricted only
to the application address space. However, the code segment
selector spans the entire addressing space since the
application needs to execute code in the OS. But, the fact that
the code segment selector is execute-only prevents the
application from either disassembling or reading OS code or
data in order to discover the DSOS selector.

IO Protection
 KLOS achieves I/O protection by making use of the
80x86 I/O Bitmap structure in the TSS and the DSAPP
selector addressing limitations. Protection in case of memory
mapped I/O is achieved by mapping I/O addresses in the OS
data region. This means that the applications cannot do
memory mapped I/O by themselves without going through
the OS since any access to a memory location outside of the
limits of the DSAPP selector will result in a general
protection fault that is handled by the Event Core.

To understand how KLOS achieves legacy I/O
protection, it is important to know about the TSS I/O Bitmap
and how the Intel 80x86 uses it. The CPU has provision for a
bit-mask array (called the I/O Bitmap) referenced by the TSS.
Each bit in this array corresponds to an I/O port. If the bit is a
1, access is disallowed and an exception occurs whenever
access to the corresponding port is attempted. If the bit is a 0,
direct and unhampered access is granted to that particular
port.

Any process with a Current Privilege Level (CPL) that is
numerically greater than the I/O Privilege Level (IOPL) must
go through the above described I/O protection mechanism
when attempting port I/O. KLOS makes use of this prominent
feature of the 80x86 class of CPUs, by setting the IOPL <
CPL and controlling the ports accessed by using the I/O
Bitmap. If there is a general protection fault due to an illegal
I/O access, the Event Core dispatches the fault to the
appropriate OS fault handler that then decides either to give
the application a chance to recover from the fault or to
terminate it altogether.

The section of the OS code that wishes to do legacy I/O
must obtain permissions to set the corresponding bit in the
TSS I/O Bitmap to a 0 so that access to that particular port is
allowed. A point to be noted is that OS code can access the
TSS I/O Bitmap of the current process, since the DSOS
segment selector encompasses the complete memory
addressing range. OS code can do memory mapped I/O
without any prior setup as memory mapped I/O does not
depend on the TSS I/O Bitmap.

 The CPU stores the pointer to the memory location of
the I/O Bitmap in the TSS. In KLOS this pointer points to a
virtual address that lies exactly on a page boundary. Each
process has a separate I/O Bitmap area allocated to it.
Switching to a new set of I/O privileges upon a scheduler pre-
emption, is accomplished by simply re-mapping the page
tables to make the TSS pointer point to the I/O Bitmap area
of the process being switched to.

Other Protection mechanisms
 The Intel 80x86 (and compatibles) class of processors
support instructions which can provide the location of certain
system tables such as the GDT, the LDT/IDT, the TSS etc.

The problem arises from the fact that instructions such as the
SGDT/SIDT/SLDT/STR can be executed at CPL=3
(unprivileged). So an application designed to peek or poke
into the system tables will make use of such instructions to
locate the area in memory where these structures are stored
and manipulate them according to their will.
 KLOS however is immune to attacks involving such
instructions to locate and possibly manipulate critical system
structures. KLOS stores these critical system structures in
memory that is not accessible using the DSAPP selector. This
means that though nothing is done to prevent the execution of
these instructions, the application can at most know the
location of the structures but can never read or write to them.

The most dangerous attack against KLOS is the attack
involving locating the DSOS selector. Access to this selector
empowers an application with read write privileges, which
allow it to manipulate any critical OS structure in memory at
will. However, KLOS thwarts this attack by relocating the
DSOS selector upon sensing a potential attack.

We note that segment selectors in the Intel 80x86 are
integers from 0 through 65528 in increments of 8 (one set
each for the GDT and LDT). A potential attack involving
guessing the DSOS selector could proceed along two lines.
An application could use a brute-force method loading its
data selector with values in the range of selectors possible,
and each time trying to reference a memory region outside of
its space. If there is an exception during the access, an
application exception handler that is registered, gets the
callback and increments the index. When there is no
exception for a particular index, the application knows it has
got hold of the DSOS selector for that session. Another
variation to this theme is to create multiple threads each
randomly trying to locate the magic selectors using the same
technique as described.

To make locating the DSOS selector hard (but not
impossible) KLOS relocates the DSOS selector to a new
random location on every three “segment not present fault”
exceptions. This will entail patching the service trampoline to
reflect the relocated DSOS selector value. When a “segment
not present fault” is generated, KLOS assumes that there is an
attempt to break in and terminates the application. Three such
successive faults trigger a relocation.

Considering that we use both the GDT and the LDT for
relocation, there are 16382 (65528*2/8) possible values.
Therefore, the probability of the first guess being correct is
1/16382, if the first guess fails the second guess has a
probability of success of 1/16381 and the third has a success
of 1/16380. Therefore the probability of success is
1/16382+1/16381+1/16380 (either the first is a success or the
second or the third). This comes up to 1.83*10^-4. That is
around 2 in 10000 chance of a correct guess.

Service Calls

We came up with a couple of designs for a service call
implementation in KLOS. Both designs include a prologue
and an epilogue code area. The service call prologue code is
responsible for loading the data segment selector with the
DSOS selector prior to executing the actual service call in the
OS address space. Upon return from the service call, the data
segment selector is reloaded with the DSAPP selector and
execution is resumed. The necessity of the prologue/epilogue

code is to – (1) establish the DSOS selector to address the
entire addressing space and (2) to prevent the application
from seeing the value of the DSOS selector.

The first design is as shown in figure 2(a). When an
application makes a service call, it transfers control to the
KLOS service trampoline area where the actual service call is
executed by means of a Service Table. The Service Table is
merely an array of 32-bit pointers to the various system calls.
The second design is as shown in figure 2(b). In this, each of
the service calls has their own prologue and epilogue code
eliminating the need for a Service Table.

4. PERFORMANCE
 To validate our design we implemented a prototype of
KLOS. For test purposes, an AMD Athlon XP 1.3 GHz and
an Intel Pentium III 1 GHz processor were used. The test
environment consisted of a DOS shell executing in real mode
and a DOS executable running on top of it. The executable
switches from real to protected mode and performs a NULL
system call. The choices for the NULL system call
implementation are, (i) a traditional trap/interrupt based
mechanism, (ii) KLOS Design A: using the service
trampoline area, and (iii) KLOS Design B: using a separate
prologue and epilogue for each service call.

In order to keep the protected-mode environment simple
and the service call method predictable, IRQ handlers and
other modules like memory manager, scheduler etc., were not
programmed. A couple of TSSs were setup. One was set to
execute at the privileged level while the other was set to
execute at the unprivileged level. This was done to simulate a
ring transition thereby measuring the latency of a traditional
trap/interrupt based service call.

 We used processor clock cycles as the performance
metric for comparison. This metric is chosen, as it does not
vary across processor speeds. The RDTSC instruction was
used to measure the clock cycles. The timings for the best-
case were measured by bringing the code being executed into
the processor’s L1 cache using tight loops. The worst-case
timings were measured by executing the code only once
(ensuring its absence from the L1 cache). The average-case
was measured by executing the same copy of the code a few
times in sequence. The performance measurements are shown
in Table 1. From the performance numbers, one can observe
that the system call implementation in KLOS is more
efficient than the current widely implemented methods of
system calls.

A few words on the likelihood of the above-cited cases is
in order. The best-case of Design A is no doubt the fastest of
all, but in practice turns out not being the most likely case
(we have a logical explanation for this but space restrictions
prevent us from discussing it here). The average-case of
Design B, from our tests, was the most likely scenario. The
point to note is that both these cases are much faster than the
best-case measure of the traditional trap/interrupt based
mechanism. In summary, both KLOS designs A and B
perform an order of magnitude better (even in the worst-case)
than traditional service-call mechanisms.

5. CONCLUSION
The results show that the KLOS service-call design

provides better performance than current ring-transition

oriented operating systems. At the same time it provides the
protection facilities as available in contemporary operating
systems. The target environment for KLOS is desktop
computing and multimedia operating systems where security
is not of utmost important.

Our next step is complete system integration with all
components such as the scheduler and the memory manager.
The idea of our service call method may open up the
mechanism of doing away with the traditional buffer copy
mechanism between user and kernel mode, which if
successful, will further improve the overall performance of
the OS. Further, we need to account for other forms of
latency such as the context switch during scheduling and
hardware interrupt latency with the current design of our
event core. We are working towards doing away with the
event core and handling interrupts and exceptions at the
unprivileged level.

6. BIBLIOGRAPHY
[1] J. Keedy. Paging and small segments: A memory management
model. 8th World Computer Congress, Melbourne, 1980.
[2] G. Hamilton and P. Kougiouris., The Spring nucleus: A
microkernel for objects. USENIX 1993, pages 147-159.
[3] B. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P.
Pardyak, S. Savage, and E. Sirer., SPIN - an extensible microkernel

for application specific operating system services. 1994 European
SIGOPS Workshop, 1994.
[4] R. H. Campbell and S. M. Tan, µChoices: An Object-Oriented
Multimedia Operating System. In Fifth Workshop on Hot Topics in
Operating Systems, Orcas Island, WA, May 1995.
[5] S. Radia, G. Hamilton, P. Kessler, and M. Powell. The Spring
object model. USENIX Conf. on Object-Oriented Technologies,
Monterey CA (USA), June 1995.
[6] D. Engler, M. Kaashoek, and J. O'Toole. Exokernel: An
operating sytem architecture for application-level resource
management. 15th ACM Symposium on Operating System
Principles, pages 251 - 266, 1995.
[7] H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter.
The performance of µ-Kernel-based systems. ACM 16th
Symposium on Operating Systems Princpiles, pages 66 - 77, 1997.
[8] G. C. Necula. Proof-carrying code. 24th ACM Symposium on
Principles of Programming Languages, Paris, France, January 1997.
[9] E. Gabber, J. Bruno, J. Brustoloni, A. Silberscatz, and C. Small.
The pebble component-based operating system. 1999 USENIX
Technical Conference, Monterey, CA, June 1999.
[10] G. Law, J. McCann. A new protection model for component
based operating systems. IEEE IPCCC 2000.
[11] F. J. Ballesteros, R. Jimenez, M. Pati˜, F. Kon, S. Arevalo and
R. Campbell. Using interpreted CompositeCalls to improve
operating system services. S/W. Pract. and Exp. 2000. 30:589–615.
[12] T. Shinagawa, K. Kono, T. Masuda. Fine-grained Protection
Domain based on Segmentation Mechanism. Japan Society for
Software Science and Technology 2000.

Service call method Processor Best Case Worst Case Average Case
Regular INT XX AMD 145 750 145
Regular INT XX Intel P3 217 1103 217
KLOS Design A AMD 15 707 31
KLOS Design A Intel P3 28 1057 72
KLOS Design B AMD 25 170 37
KLOS Design B Intel P3 38 220 58

Table 1: Performance metrics comparing traditional trap/interrupt based service call and KLOS service calls.

 Application Code

…
MOV EAX, m
CALL <XXXXXXXX>
…
…
MOV EAX, n
CALL <XXXXXXXX>
…

Service Trampoline

XXXXXXXX:
 PUSH EAX
 MOV EAX, DSOS
 MOV DS, AX
 POP EAX
 CALL [ServiceTable+EAX*4]
 PUSH EAX
 MOV EAX, DSAPP
 MOV DS, AX
 POP EAX
 RET

OS Code

Service call ‘m’
YYYYYYYY:
 PUSH EBP
 MOV EBP, ESP
 …
 RET

Service call ‘n’
ZZZZZZZZ:
 PUSH EBP
 MOV EBP, ESP
 …
 RET

Application Code

…
…
CALL <YYYYYYYY>
…
…
CALL <ZZZZZZZZ>
…

OS Code

Service Call ‘m’
YYYYYYYY:
 PUSH EAX
 MOV EAX, DSOS
 MOV DS, AX
 POP EAX
 ;actual code for service call
 PUSH EAX
 MOV EAX, DSAPP
 MOV DS, AX
 POP EAX
 RET

Service Call ‘ n’
ZZZZZZZZ:
 PUSH EAX
 MOV EAX, DSOS
 MOV DS, AX
 POP EAX
 ;actual code for service call
 PUSH EAX
 MOV EAX, DSAPP
 MOV DS, AX
 POP EAX
 RET

(a)

(b)
Figure 2: KLOS Service-Call Designs

