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ABSTRACT 
Operating Systems provide services that are accessed by 
processes via mechanisms that involve a ring transition to 
transfer control to the kernel where the required function is 
performed. This has one significant drawback that every 
service call involves an overhead of a context switch where 
processor state is saved and a protection domain transfer is 
performed. However, as we discovered, it is possible, on 
architectures that support segmentation, to achieve a 
significant performance gain in accessing the services 
provided by the operating system by not performing a ring 
transition. Further, such gains can be achieved without 
compromising on the separation of the privileged components 
from the non-privileged. Our service call mechanism results 
in 28 clock cycles in the best case and 50 clock cycles in the 
average case which is an order of magnitude faster than 
current widely implemented methods of service or system 
calls 
 

1. INTRODUCTION 
Most, if not all production level operating systems have a 

dual mode of operation – (1) the privileged level where the 
kernel resides and,  (2) the unprivileged level where 
application and system processes execute. A ring transition 
mechanism is used to move from one level to the other. The 
idea behind this separation has always been protection and 
stability. However, on architectures that support 
segmentation, it is possible to achieve a significant 
performance gain by eliminating the ring transition. Further, 
such gains can be achieved without compromising protection. 
This is made possible by the use of a subtle trick involving 
segmentation and Task State Segments (TSS).  

We propose an operating system design in which – (1) 
there is no protected kernel as perceived in current operating 
systems, (2) Operating system services are accessed without a 
ring transition, (3) all processes and the operating system 
execute at the unprivileged level and, (4) each process has its 
own private address space and virtual memory mapping and 
functions independent of all other processes in the system. 
KLOS, a Kernel-Less Operating System is a realization of 
this design.  

We primarily target this design towards personal 
computers where performance takes precedence over 
stability. A point to be reinforced is that, regular runaway 
processes do not pose a threat to the stability of the operating 
system built on this design. Processes that are specifically 
engineered to thwart the stability of the system are contained 
with a very high probability of success. 
  KLOS is very much a work in progress. However, we 
have had very promising preliminary results that validate our 
design and therefore prompted us to share it with the research 
community at large. The following sections of the paper 
discuss the design, implementation and performance study in 
detail. 

 

2. BACKGROUND 
Early operating systems relied on a monolithic kernel 

design. The application processes were launched in the 
unprivileged mode that accessed services through the 
traditional system call barrier, which involved a transition 
from the user space to the kernel space. Examples include 
UNIX, BSD and, Windows.  

With Microkernels, most components of the operating 
system were isolated from one another whilst maintaining a 
very minimal core that provided services (threads, messaging, 
RPC/LPC etc.) to the components. Examples include Spring 
[2,5], uChoices [3], SPIN [4]. They performed better [7] in 
comparison to traditional monolithic kernels, but still relied 
on the system call barrier for protection. 
  Exokernels [6] provided a minimal kernel with only 
message passing and moved most of what was in the 
microkernel out into the user space. Again, they relied on a 
ring transition to provide protection between the kernel and 
the application. 

Component-based OSs involve a Nanokernel that 
manages component interaction as seen in operating systems 
like Pebbles [9] and Go! [10]. The Go! Operating system, 
which matches the performance of KLOS, launches all the 
components in the most privileged level, by using a static 
technique called code scanning where the executables are 
pre-scanned for illegal/privileged instructions [8]. 

There were other methods proposed to increase the 
performance of operating systems while at the same time 
ensuring protection by employing the segmentation capability 
of x86-based processors [1,11,12]. Our design also makes use 
of this capability, doing away with the down-call to the 
protected kernel. Lastly, our method is dynamic, which 
means there is no code pre-scanning or other procedures that 
need to be applied on application code before it is executed. 
 

3. DESIGN 
        Our architecture, at its heart consists of an event core 
that is responsible for acting upon external events (hardware 
interrupts and processor generated exceptions). Events are the 
only means of vertical up-calls to the unprivileged domain. 
There are no down-calls to the privileged domain resulting in 
no context switches during normal program flow. All the 
components of a typical OS like the memory manager, 
process manager, device drivers etc. run in the unprivileged 
domain and have a horizontal mode of interaction.  
 
Event Core 
        The Event Core is the heart of the KLOS architecture. 
The amount of processing done in the event core is minimal 
and restricted to transferring control to the unprivileged 
domain and performing an optional Translation Look-aside 
Buffer (TLB) flush. It is important to note that the Event Core 
is not just another name for the “kernel”  as viewed in 
traditional OSs. Unlike traditional kernels, in KLOS there are 
no “down-calls” to the Event Core. 



The TSS created during OS startup is initialized with 
support for the Event Core. This includes the event core stack 
that needs to be intact upon event triggering, as it is a part of 
the Trusted Computing Base (TCB) of the OS. The Event 
Core is composed of event stubs, one for every hardware 
interrupt or exception the underlying processor architecture 
supports. These event stubs are registered once at system 
initialization. The exact flow of how an event is handled is as 
depicted in figure 1. 
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Figure 1:  Event Core 

Upon a hardware interrupt or exception, the processor 
switches the current context to the privileged level (Ring0) 
and transfers control to a vectored interrupt or exception 
handler corresponding to the interrupt or exception via the 
Interrupt Descriptor Table (IDT). In this case, each of the 
handlers will be pointing to an event stub 
“Eventn_Ring0Stub” . Eventn_Ring0Stub will 
reflect the interrupt or exception ‘n’, to the unprivileged level 
(Ring 3) stub “Eventn_Ring3Stub”  via a far CALL, 
switching privilege levels. This ring 3 stub in turn executes a 
JMP to a registered event handler, “Eventn_Handler”  at 
the same unprivileged level. 

Once “Eventn_Handler”  has completed its 
execution, control returns back to  “Eventn_Ring0Stub”  
via a far return, switching back to the privileged level (Ring 
0). “Eventn_Ring0Stub”  then performs an optional TLB 
flush. Event Handlers in subsystems such as the scheduler or 
the memory manager modify virtual memory mappings. 
Committing changes to such mappings requires a TLB flush. 
Finally, “Eventn_Ring0Stub”  issues an end of interrupt 
or exception signal to the processor.  
 
Protection 
        To achieve a similar level of protection as with a ring-
transition mechanism, we make use of a combination of 
segmentation and TSS. Below, we discuss the various kinds 
of protection that KLOS provides. 
 
Memory protection 
        There are two pairs of unique data segment selectors – 
one for the application data access (DSAPP), which is limited 
to the application address space and the other for the 
protected OS data space (DSOS), encompassing the entire 
4GBytes address space. All segment descriptors have a 
Descriptor Privilege Level (DPL) of 3 (unprivileged). There 
is only one code segment selector that is shared between the 
application and the OS. The code segment descriptor is 
constructed so that it is only executable and not readable. 

The DSAPP selector prevents the application from 
tampering with critical OS structures, as it is restricted only 
to the application address space. However, the  code segment 
selector spans the entire addressing space since the 
application needs to execute code in the OS. But, the fact that 
the code segment selector is execute-only prevents the 
application from either disassembling or reading OS code or 
data in order to discover the DSOS selector.  
 
IO Protection 
        KLOS achieves I/O protection by making use of the 
80x86 I/O Bitmap structure in the TSS and the DSAPP 
selector addressing limitations. Protection in case of memory 
mapped I/O is achieved by mapping I/O addresses in the OS 
data region. This means that the applications cannot do 
memory mapped I/O by themselves without going through 
the OS since any access to a memory location outside of the 
limits of the DSAPP selector will result in a general 
protection fault that is handled by the Event Core. 

To understand how KLOS achieves legacy I/O 
protection, it is important to know about the TSS I/O Bitmap 
and how the Intel 80x86 uses it. The CPU has provision for a 
bit-mask array (called the I/O Bitmap) referenced by the TSS. 
Each bit in this array corresponds to an I/O port. If the bit is a 
1, access is disallowed and an exception occurs whenever 
access to the corresponding port is attempted. If the bit is a 0, 
direct and unhampered access is granted to that particular 
port. 

Any process with a Current Privilege Level (CPL) that is 
numerically greater than the I/O Privilege Level (IOPL) must 
go through the above described I/O protection mechanism 
when attempting port I/O. KLOS makes use of this prominent 
feature of the 80x86 class of CPUs, by setting the IOPL < 
CPL and controlling the ports accessed by using the I/O 
Bitmap. If there is a general protection fault due to an illegal 
I/O access, the Event Core dispatches the fault to the 
appropriate OS fault handler that then decides either to give 
the application a chance to recover from the fault or to 
terminate it altogether. 

The section of the OS code that wishes to do legacy I/O 
must obtain permissions to set the corresponding bit in the 
TSS I/O Bitmap to a 0 so that access to that particular port is 
allowed. A point to be noted is that OS code can access the 
TSS I/O Bitmap of the current process, since the DSOS 
segment selector encompasses the complete memory 
addressing range. OS code can do memory mapped I/O 
without any prior setup as memory mapped I/O does not 
depend on the TSS I/O Bitmap. 

 The CPU stores the pointer to the memory location of 
the I/O Bitmap in the TSS. In KLOS this pointer points to a 
virtual address that lies exactly on a page boundary. Each 
process has a separate I/O Bitmap area allocated to it. 
Switching to a new set of I/O privileges upon a scheduler pre-
emption, is accomplished by simply re-mapping the page 
tables to make the TSS pointer point to the I/O Bitmap area 
of the process being switched to.  
 
Other Protection mechanisms 
        The Intel 80x86 (and compatibles) class of processors 
support instructions which can provide the location of certain 
system tables such as the GDT, the LDT/IDT, the TSS etc. 



The problem arises from the fact that instructions such as the 
SGDT/SIDT/SLDT/STR can be executed at CPL=3 
(unprivileged). So an application designed to peek or poke 
into the system tables will make use of such instructions to 
locate the area in memory where these structures are stored 
and manipulate them according to their will.  
        KLOS however is immune to attacks involving such 
instructions to locate and possibly manipulate critical system 
structures. KLOS stores these critical system structures in 
memory that is not accessible using the DSAPP selector. This 
means that though nothing is done to prevent the execution of 
these instructions, the application can at most know the 
location of the structures but can never read or write to them. 

The most dangerous attack against KLOS is the attack 
involving locating the DSOS selector. Access to this selector 
empowers an application with read write privileges, which 
allow it to manipulate any critical OS structure in memory at 
will. However, KLOS thwarts this attack by relocating the 
DSOS selector upon sensing a potential attack.  

We note that segment selectors in the Intel 80x86 are 
integers from 0 through 65528 in increments of 8 (one set 
each for the GDT and LDT). A potential attack involving 
guessing the DSOS selector could proceed along two lines. 
An application could use a brute-force method loading its 
data selector with values in the range of selectors possible, 
and each time trying to reference a memory region outside of 
its space. If there is an exception during the access, an 
application exception handler that is registered, gets the 
callback and increments the index. When there is no 
exception for a particular index, the application knows it has 
got hold of the DSOS selector for that session. Another 
variation to this theme is to create multiple threads each 
randomly trying to locate the magic selectors using the same 
technique as described. 

To make locating the DSOS selector hard (but not 
impossible) KLOS relocates the DSOS selector to a new 
random location on every three “segment not present fault”  
exceptions. This will entail patching the service trampoline to 
reflect the relocated DSOS selector value. When a “segment 
not present fault”  is generated, KLOS assumes that there is an 
attempt to break in and terminates the application. Three such 
successive faults trigger a relocation. 

Considering that we use both the GDT and the LDT for 
relocation, there are 16382 (65528*2/8) possible values. 
Therefore, the probability of the first guess being correct is 
1/16382, if the first guess fails the second guess has a 
probability of success of 1/16381 and the third has a success 
of 1/16380. Therefore the probability of success is 
1/16382+1/16381+1/16380 (either the first is a success or the 
second or the third). This comes up to 1.83*10^-4. That is 
around 2 in 10000 chance of a correct guess. 
 
Service Calls 

We came up with a couple of designs for a service call 
implementation in KLOS. Both designs include a prologue 
and an epilogue code area. The service call prologue code is 
responsible for loading the data segment selector with the 
DSOS selector prior to executing the actual service call in the 
OS address space. Upon return from the service call, the data 
segment selector is reloaded with the DSAPP selector and 
execution is resumed. The necessity of the prologue/epilogue 

code is to – (1) establish the DSOS selector to address the 
entire addressing space and (2) to prevent the application 
from seeing the value of the DSOS selector. 

The first design is as shown in figure 2(a). When an 
application makes a service call, it transfers control to the 
KLOS service trampoline area where the actual service call is 
executed by means of a Service Table. The Service Table is 
merely an array of 32-bit pointers to the various system calls. 
The second design is as shown in figure 2(b). In this, each of 
the service calls has their own prologue and epilogue code 
eliminating the need for a Service Table.   
 

4. PERFORMANCE 
        To validate our design we implemented a prototype of 
KLOS. For test purposes, an AMD Athlon XP 1.3 GHz and 
an Intel Pentium III 1 GHz processor were used. The test 
environment consisted of a DOS shell executing in real mode 
and a DOS executable running on top of it. The executable 
switches from real to protected mode and performs a NULL 
system call. The choices for the NULL system call 
implementation are, (i) a traditional trap/interrupt based 
mechanism, (ii) KLOS Design A: using the service 
trampoline area, and (iii) KLOS Design B: using a separate 
prologue and epilogue for each service call. 

In order to keep the protected-mode environment simple 
and the service call method predictable, IRQ handlers and 
other modules like memory manager, scheduler etc., were not 
programmed. A couple of TSSs were setup. One was set to 
execute at the privileged level while the other was set to 
execute at the unprivileged level. This was done to simulate a 
ring transition thereby measuring the latency of a traditional 
trap/interrupt based service call. 

 We used processor clock cycles as the performance 
metric for comparison. This metric is chosen, as it does not 
vary across processor speeds. The RDTSC instruction was 
used to measure the clock cycles. The timings for the best-
case were measured by bringing the code being executed into 
the processor’s L1 cache using tight loops. The worst-case 
timings were measured by executing the code only once 
(ensuring its absence from the L1 cache). The average-case 
was measured by executing the same copy of the code a few 
times in sequence. The performance measurements are shown 
in Table 1. From the performance numbers, one can observe 
that the system call implementation in KLOS is more 
efficient than the current widely implemented methods of 
system calls. 

A few words on the likelihood of the above-cited cases is 
in order. The best-case of Design A is no doubt the fastest of 
all, but in practice turns out not being the most likely case 
(we have a logical explanation for this but space restrictions 
prevent us from discussing it here). The average-case of 
Design B, from our tests, was the most likely scenario. The 
point to note is that both these cases are much faster than the 
best-case measure of the traditional trap/interrupt based 
mechanism. In summary, both KLOS designs A and B 
perform an order of magnitude better (even in the worst-case) 
than traditional service-call mechanisms. 
 

5. CONCLUSION 
The results show that the KLOS service-call design 

provides better performance than current ring-transition 



oriented operating systems. At the same time it provides the 
protection facilities as available in contemporary operating 
systems. The target environment for KLOS is desktop 
computing and multimedia operating systems where security 
is not of utmost important. 

Our next step is complete system integration with all 
components such as the scheduler and the memory manager. 
The idea of our service call method may open up the 
mechanism of doing away with the traditional buffer copy 
mechanism between user and kernel mode, which if 
successful, will further improve the overall performance of 
the OS. Further, we need to account for other forms of 
latency such as the context switch during scheduling and 
hardware interrupt latency with the current design of our 
event core. We are working towards doing away with the 
event core and handling interrupts and exceptions at the 
unprivileged level.  
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Service call method Processor Best Case Worst Case Average Case 
Regular INT XX AMD 145 750 145 
Regular INT XX Intel P3 217 1103 217 
KLOS Design A AMD 15 707 31 
KLOS Design A Intel P3 28 1057 72 
KLOS Design B AMD 25 170 37 
KLOS Design B Intel P3 38 220 58 

Table 1: Performance metrics comparing traditional trap/interrupt based service call and KLOS service calls. 
 

 Application Code 

… 
MOV EAX, m 
CALL <XXXXXXXX> 
… 
… 
MOV EAX, n 
CALL <XXXXXXXX> 
… 

Service Trampoline 

XXXXXXXX:                 
   PUSH EAX 
   MOV EAX, DSOS 
   MOV DS, AX 
   POP EAX 
   CALL [ServiceTable+EAX*4] 
   PUSH EAX 
   MOV EAX, DSAPP 
   MOV DS, AX 
   POP EAX 
   RET 

 

OS Code 

Service call ‘m’  
YYYYYYYY: 
   PUSH EBP 
   MOV EBP, ESP 
   … 
   RET 

Service call ‘n’  
ZZZZZZZZ: 
   PUSH EBP 
   MOV EBP, ESP 
   … 
   RET 

Application Code 

… 
… 
CALL <YYYYYYYY> 
… 
… 
CALL <ZZZZZZZZ> 
… 

OS Code 

Service Call ‘m’  
YYYYYYYY:                 
   PUSH EAX 
   MOV EAX, DSOS 
   MOV DS, AX 
   POP EAX 
   ;actual code for service call 
   PUSH EAX 
   MOV EAX, DSAPP 
   MOV DS, AX 
   POP EAX 
   RET 

 

Service Call ‘ n’  
ZZZZZZZZ:                 
   PUSH EAX 
   MOV EAX, DSOS 
   MOV DS, AX 
   POP EAX 
   ;actual code for service call 
   PUSH EAX 
   MOV EAX, DSAPP 
   MOV DS, AX 
   POP EAX 
   RET 

 

(a) 

(b)  
Figure 2: KLOS Service-Call Designs 


